Bayesian Image Segmentation Using Gaussian Field Priors
نویسنده
چکیده
The goal of segmentation is to partition an image into a finite set of regions, homogeneous in some (e.g., statistical) sense, thus being an intrinsically discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems. This paper presents a formulation which allows using continuous priors, namely Gaussian fields, for image segmentation. Our approach completely avoids the combinatorial nature of standard Bayesian approaches to segmentation. Moreover, it’s completely general, i.e., it can be used in supervised, unsupervised, or semi-supervised modes, with any probabilistic observation model (intensity, multispectral, or texture features). To use continuous priors for image segmentation, we adopt a formulation which is common in Bayesian machine learning: introduction of hidden fields to which the region labels are probabilistically related. Since these hidden fields are real-valued, we can adopt any type of spatial prior for continuous-valued fields, such as Gaussian priors. We show how, under this model, Bayesian MAP segmentation is carried out by a (generalized) EM algorithm. Experiments on synthetic and real data shows that the proposed approach performs very well at a low computational cost.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملMotion Segmentation Using Inference in Dynamic Bayesian Networks
Existing formulations for optical flow estimation and image segmentation have used Bayesian Networks and Markov Random Field (MRF) priors to impose smoothness of segmentation. These approaches typically focus on estimation in a single time slice based on two consecutive images. We develop a motion segmentation framework for a continuous stream of images using inference in a corresponding Dynami...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005